Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1291: 342235, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38280784

RESUMO

In this study, an electrochemical aptasensor was developed for the specific detection of sarcosine using a covalent organic framework (COF). The imine-based two-dimensional COF was synthesized through a solvothermal process using terephthaldehyde and melamine. This resulted in the formation of a structure that is highly porous and has a unique surface area of 908 m2/g. The produced biosensor demonstrated a significant linear relationship between charge transfer resistance (Rct) and various concentrations of sarcosine in blood serum samples. The aptasensor had two linear ranges, spanning from 0.5 fM to 700 fM and 10 pM to 0.12 nM, respectively, with a detection limit of 0.15 fM. The incorporation of high surface area COFs in the aptasensor design offers a promising combination of sensitivity, stability, and specificity. This combination creates a valuable device for diagnosing and monitoring of prostate cancer and potentially other diseases.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Estruturas Metalorgânicas , Neoplasias da Próstata , Humanos , Masculino , Estruturas Metalorgânicas/química , Sarcosina , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Neoplasias da Próstata/diagnóstico , Limite de Detecção , Técnicas Eletroquímicas/métodos
2.
RSC Adv ; 11(21): 12845-12859, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35423810

RESUMO

The six-coordinated bis-o-iminosemiquinone complex, NiL2 BIS, in which LBIS is the o-iminosemiquinone 1-electron oxidized form of the tridentate o-aminophenol benzoxazole-based ligand H2LBAP, was synthesized and characterized. The crystal structure of the complex reveals octahedral geometry with a NiN4O2 coordination sphere in which Ni(ii) has been surrounded by two tridentate LBIS ligands. This compound exhibits (S Ni = 1) with both spin and orbital contribution to the magnetic moment and antiferromagnetic coupling between two electrons on two LBIS ligands which results in a triplet spin ground state (S = 1). The electronic transitions and the electrochemical behavior of this open-shell molecule are presented here, based on experimental observations and theoretical calculations. The electrochemical behavior of NiL2 BIS was investigated by cyclic voltammetry and indicates ligand-centered redox processes. Three-component coupling of aldehydes, amines and alkynes (A3-coupling) was studied in the presence of the NiL2 BIS complex, and the previously reported four-coordinated bis-o-iminosemiquinone NiL2 NIS. Furthermore, among these two o-iminobenzosemiquinonato(1-) complexes of Ni(ii) (NiL2 NIS and NiL2 BIS), NiL2 NIS was found to be an efficient catalyst in A3-coupling at 85 °C under solvent-free conditions and can be recovered and reused for several cycles with a small decrease in activity.

3.
RSC Adv ; 10(67): 40853-40866, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-35519205

RESUMO

We report a new mononuclear molybdenum(iv) complex, MoOLBISLSQ, in which LSQ (2,4-di-tert-butyl o-semibenzoquinone ligand) has been prepared from the reaction of the o-iminosemibenzoquinone form of a tridentate non-innocent benzoxazole ligand, LBIS, and MoO2(acac)2. The complex was characterized by X-ray crystallography, elemental analysis, IR and UV-vis spectroscopy and magnetic susceptibility measurements. The crystal structure of MoOLBISLSQ revealed a distorted octahedral geometry around the metal centre, surrounded by one O and two N atoms of LBIS and two O atoms of LSQ. The effective magnetic moment (µ eff) of MoOLBISLSQ decreased from 2.36 to 0.2 µB in the temperature range of 290 to 2 K, indicating a singlet ground state caused by antiferromagnetic coupling between the metal and ligand centred unpaired electrons. Also, the latter led to the EPR silence of the complex. Cyclic voltammetry (CV) studies indicate both ligand and metal-centered redox processes. MoOLBISLSQ was applied as a catalyst for the oxidative cleavage of cyclohexene to adipic acid and selective oxidation of sulfides to sulfones with aqueous hydrogen peroxide.

4.
RSC Adv ; 10(41): 24176-24189, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35516191

RESUMO

A new Ni(ii) complex, was synthesized from the reaction of a non-innocent o-aminophenol ligand, and Ni(OAc)2. The crystal structure of NiIIL2 NIS (in which, IS stands for iminosemiquinone radical ligand with cyanide (shown by N in NIS) substituent on phenolate rings) exhibits the square planar environment of Ni(ii). The complex has been crystalized in the monoclinic system and Ni(ii) was surrounded by two oxygen and two nitrogen atoms of two ligands. Variable-temperature magnetic susceptibility measurement for crystalline samples of complex shows the effective magnetic moment per molecule (µ eff) of near zero and the diamagnetic nature of the complex (S = 0) which emphasize that strong antiferromagnetic coupling prevailed between the two unpaired electrons of LNIS ligands and Ni(ii) high spin electrons. The complex is EPR silent which confirms the diamagnetic character of the Ni(ii) complex. Electrochemical measurement (CV) indicates the redox-active character of ligand and metal. NiIIL2 NIS complex proved to be effective for free metal- or base counterpart homocoupling of phenyl acetylene at room temperature. To the best of our knowledge, this is the first example of using Ni(ii) complex without using any reducing agent due to the promotion ancillary effect of non-innocent o-aminophenol ligand which acts as an "electron reservoir" and can reversibly accept and donate electrons in the catalytic cycle. The theoretical calculation confirms the magnetostructure, electronic spectrum and confirmed the suggested mechanism of phenyl acetylene homocoupling with emphasis on the role of non-innocent ligand electro-activity and the effect of ligand substituent on the efficiency and stability of the complex.

5.
Acta Crystallogr Sect E Struct Rep Online ; 65(Pt 3): o532-3, 2009 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21582193

RESUMO

The combination of 2-hydroxy-propane-1,2,3-tricarboxylic acid (H(3)hypta, also called citric acid) and 4,4'-bipyridine (4,4'-bipy) in a 1:1.5 molar ratio leads to the formation of the title mol-ecular cocrystal, 1.5C(10)H(8)N(2)·C(6)H(8)O(7). The asymmetric unit contains one and a half 4,4'-bipy units, with one lying across a centre of inversion, and one H(3)hypta mol-ecule. The significant differences in the C-O bond distances support the existence of the un-ionized acid mol-ecule and confirm the formation of a cocrystal. There are π-π and C-H⋯π stacking inter-actions between the aromatic rings of 4,4'-bipy [with inter-planar distances of 3.7739 (8) and 3.7970 (8) Å] and between CH groups of H(3)hypta [with an H⋯π distance of 2.63 Å]. In the crystal structure, intermolecular O-H⋯N hydrogen bonds occur and an O-H⋯O hydrogen bond occurs within the citric acid moiety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...